Poster MS5

Supercritical Carbon Dioxide Extraction for Purification of Polyolefins

Anouar BEN SAID^{*a*}, Jean Christophe RUIZ^{*b*}, Yvan CHALAMET^{*c*}, Patrice DOLE^{*d*}, Catherine JOLY^{*e*}, Cécile GUINOT^{*e*}

^aUniversité Jean Monnet Saint-Etienne CEA Marcoule, SAINT-ETIENNE, FRANCE; ^bCEA Marcoule, BAG-NOLS SUR CEZE, FRANCE; ^cUniversité Jean Monnet Saint-Etienne, SAINT-ETIENNE, FRANCE, ^dCentre Technique de Conservation des Produits Agricoles (CTCPA), BOURG EN BRESSE, FRANCE, ^eUniversité Claude Bernard Lyon 1, BOURG EN BRESSE, FRANCE

 \boxtimes anouar.ben.said@univ-st-etienne.fr

Throughout their lifecycle, polyolefins can be exposed to contaminating media which limit their recyclability, especially in food industry. Supercritical carbon dioxide extraction is used to remove contaminants which can penetrate into polypropylene (PP) and linear low density polyethylene (LLDPE). Two forms of contaminated material are studied : granules and films. Quantitative results for kinetics of extraction have been obtained by gas chromatography. The extraction process can be kinetically controlled by the solubility of compounds in the supercritical CO_2 or by their diffusion through the polymer by means of pressure and temperature conditions. A systematic study of the influence of the form (granules or films) and the thickness of the materials shows that it is possible to increase the speed of extraction with a thinner material : high recoveries (>97%) are obtained with films. After extraction experiments, the potential of supercritical fluid extraction (SFE) was compared to that of traditional liquid extraction with dichloromethane. Finally, the changes of rheological parameters were studied and discussed.

Keywords

Supercritical CO_2 , Supercritical fluid extraction, purification, kinetic, polypropylene, linear low density polyethylene, rheology.